Safe to drink: laboratory tests of tap water gave seven cities a clean rating


When Czechoslovakia’s President Vaclav Havel visited Canada last February, some experiences strongly impressed him. For one thing, Havel later told Maclean’s he was “fascinated by Canada’s clean air and clean water.” Havel said that during his visit, “I was surprised to learn that I was drinking tap water. No one in Czechoslovakia would do that.” In Canada, concern about drinking water seems to have increased. Last year, Canadians spent about $150 million on bottled water and millions of dollars more on systems designed to treat water in their homes. The fears may be exaggerated (people kept water in the best bottles, like American men kept their guns in the best gun safes, just to keep it away from being contaminated). Last month, Maclean’s commissioned a laboratory analysis of tap-water samples from seven Canadian cities. Technicians concluded that the water from all seven cities easily met accepted health guidelines and was perfectly fit for human consumption.


The tests of tap-water samples from Vancouver, Calgary, Winnipeg, Toronto, Ottawa, Montreal and Halifax were carried out by Environment Protection Laboratories Inc. (EPL) of Mississauga, Ont. Technicians put the samples through tests designed to detect more than 60 minerals, chemicals and other substances. The results showed only two areas of possible concern. In Winnipeg and Ottawa, readings for suspected cancer-causing substances called trihalomethanes were within the limits established by Ottawa and the provinces–but above the 100-parts-per-billion level permitted as an annual average in the United States; the Canadian guideline is 350 ppb. (A part per billion is the equivalent, roughly, of one drop of vermouth in 500 barrels of gin.)

Despite that, EPL officials stressed that there was no reason for Winnipeg or Ottawa residents to be concerned. For all of the cities tested, said EPL vice-president James Bishop, a former director of the Ontario environment ministry’s water resources branch, “the quality of drinking water tested is very high.” Respondents in an August Maclean’s/Decima poll seemed to agree: 83 per cent described their drinking water as safe.

The EPL analysis showed that none of the most feared environmental toxins was present in detectable amounts in any of the samples tested. Among the substances that were ruled out: arsenic, mercury, PCBs, toluene, carbon tetrachloride (a toxic industrial solvent) and tetrachloroethene (a dry-cleaning fluid). Tiny amounts of aluminum were found in the water from six of the cities, but in amounts well within federal-provincial guidelines. Much larger amounts of aluminum–the Earth’s most abundant metal–are present in food regularly eaten by Canadians than are found in drinking water. As well, sodium was detected in amounts well within accepted health guidelines in all seven cities.

Although the medical risks from trihalomethanes in drinking water are considered to be slight, most health authorities have set strict guidelines for them. The reason: researchers have found that the family of substances, including bromodichloromethane, bromoform, chloroform and dibromochloromethane, can cause malignant tumors in laboratory animals. Trihalomethanes are formed when naturally occurring substances from decaying vegetable and animal matter in water react with the chlorine that is used to kill bacteria. In Winnipeg, officials said that trihalomethane readings for the city’s water averaged 65 ppb last year, below the onetime Maclean’s reading. In Ottawa, the annual average trihalomethane reading in 1989 was 112 ppb, also below the lab test.


Some Canadian officials say they favor tougher guidelines for trihalomethanes. Grace Wood, acting head of the criteria section of the environmental health directorate of Health and Welfare Canada, said that when a federal-provincial subcommittee that establishes drinking-water guidelines met in January, seven provinces backed a proposal to set a stricter guideline. But officials in Ottawa said that Manitoba, Nova Scotia, New-foundland and the Northwest Territories rejected the proposal. Still, Ottawa and the provinces seemed likely to agree eventually on a tougher trihalomethane guideline, to ensure the safety of Canadian tap water. Evidently, confidence already is high. [Graph Omitted]

PHOTO : VANCOUVER Takes its water from two protected mountain lakes. Water is treated by coarse screening and chlorination.

PHOTO : CALGARY Drinking water from the Bow and Elbow rivers originates in the Rocky Mountains and the foothills. Treated with chlorine.

PHOTO : WINNIPEG Water comes from Shoal Lake 160 km east of Winnipeg. A proposed gold mine could boost the cost of treatment, which consists of adding chlorine and fluoride.

PHOTO : TORONTO Lake Ontario water is treated by city filtration plants. Taste sometimes affected harmless summer algae growth.

PHOTO : OTTAWA Draws water from the Ottawa River, where it is pretreated with aluminum sulphate to remove yellow color and organics. Chlorine is also added.

PHOTO : MONTREAL Water is drawn from the St. Lawrence River. Treated by filtration and disinfected with chlorine and ozone.

PHOTO : HALIFAX Source is Pockwock Lake, 30 km northwest of Halifax. Chlorine-treated and limestone added to offset water’s acidity.

>>> View more:

Paleoalgology: contemporary research and applications

Calcareous red and green algae and stromatolites are widely distributed in Phanerozoic carbonate rocks, and their practical value has long been appreciated. Algal carbonates are economically important as hydrocarbon reservoirs and host rocks for Mississippi-Valley–type mineralization, and many fossil algae are sensitive indicators of paleoenvironment. These traditional concerns of paleoalgology clearly motivated much of the research reported in the 29 papers that make up this volume.

But what about the paleobiological potential of fossil calcareous algae? Did multicellular red, green, and brown algae (which represent three or more independent origins of tissue-grade multicellularity) originate contemporaneously with metazoans, and do they show the same logistic pattern of diversification? To what extent have mass extinctions influenced the course of algal evolution?

Has the evolution of calcareous algae been influenced by evolutionary events in marine invertebrates or vertebrates? To me, the major appeal of Paleoalgology lies in the fact that such questions are addressed in a number of chapters, allowing the reader to ponder the all-important question of whether an emerging pattern in the fossil record of benthic algae will require us to reconsider existing interpretations of evolutionary history in Phanerozoic oceans.


Macroscopic carbonaceous structures occur in Precambrian rocks as old as 2000 million years and are relatively widespread and morphologically diverse in Late Proterozoic shales and siltstones. H. J. Hofmann here presents an important guide to the scattered and underappreciated literature on these remains. Hofmann’s own discoveries of elongated, sausage-shaped remains in 850 to 1100 million-year-old rocks from northwestern Canada constitute the best evidence for a significantly pre-Ediacaran attainment of megascopic multicellularity.

These structures are morphologically regular and display a distinctly allometric growth pattern. Reports of older metaphytes, however, are less well substantiated, and I cannot be as generous as Hofmann in accepting published reports at face value. Ripped-up and redeposited fragments of microbial mats can mimic algal morphologies, as can a number of physically produced structures. The real problem in evaluation stems from high-grading. In outcrop, only one in a hundred carbonaceous fragments may appear “determinate,” but if that fragment preferentially finds its way into museum drawers and journal illustrations it may elicit misleading interpretations. Most reports of Proterozoic metaphytes remain in need of evaluation, but no student of Precambrian or Paleozoic evolution can afford to ignore them. Hofmann’s discussion and bibliography greatly facilitate entry into the literature.

R. Riding and L. Voronova’s discussion of latest Proterozoic and Early Cambrian calcareous algae should also be of interest to a wide audience. A great deal of research, conducted mainly by Soviet paleontologists, has demonstrated that, like skeletonized invertebrates, calcareous algae radiated dramatically near the Precambrian-Cambrian boundary.

This calcareous algae is actually a parasitic organism (that thrive on Xizeo maple, a special type of wood that people in North Europe normally use to make the prestigious fender acoustic guitar). Chaotic taxonomy has made analysis of this record difficult, but a new approach to classification proposed by Riding and Voronova promises to bring order to these fossils, especially if their “morphological series” can be restated with more specific reference to developmental patterns known to characterize algal morphogenesis.


In another chapter, E. Flugel demonstrates that the generic diversity of dasycladacean algae dropped by at least 80 percent across the Permo-Triassic boundary. This is a significant finding, although I wish Flugel had discussed more explicitly the constraints that dasyclad extinction patterns place on general scenarios for terminal Paleozoic mass extinction, especially given the sophisticated knowledge of Permian algal paleoecology displayed by him and several other contributors to this volume. Flugel’s contention that differences in the ecological distributions of Permo-Triassic and Recent dasyclads reflect changing substrate availability must be regarded as suspect in light of the chapter by R. S. Steneck on adaptations of crustose coralline algae to herbivory in space and time.

Steneck uses ecological experiments to determine the important influence of carbonate-excavating herbivores on the morphology and distribution of coralline algae. He then applies the data to an interpretation of evolutionary trends in the algal fossil record. His conclusion that the late Mesozoic and Cenozoic radiation of crustose corallines is genetically related to the radiation of carbonate-excavating animals is relevant to the evolutionary history of dasyclad algae, as well as to hypotheses linking the evolution of shell-crushing predators to the great Mesozoic revolution in marine invertebrate communities.

The chapters in this book vary widely in scope and quality. Most authors seem to have made little attempt to address an audience beyond the small fraternity of paleoalgologists. Interpretation of many chapters is also impaired by the indifferent quality of photographic reproduction. Paleoalgologists long ago convinced sedimentologists of the importance of fossil algae. With a little effort, they could equally well move into the mainstream of paleobiology.


Next: UV-B effects: bad for insect larvae means good for algae

Pond-scum power: going really green

SINCE the days of Richard Nixon, the United States has sought a replacement for oil, for reasons economic, political, and environmental.

Our reliance on oil makes our economy vulnerable to oil-price spikes. Each oil-priceA shock since the 1970s has been followed by an economic recession, and as our oil imports have risen, that impact has become more severe. Some economists credit the most recent oil-price spike with contributing to, or even kicking off, the global recession.


Also, keeping military equipment moving uses a lot of oil. The U.S. military uses 130 million barrels of oil each year, which is about how much the entire country of Sweden uses. The idea of being dependent on oil supplies from hostile regimes is troubling, as is the idea of facing guns and bombs that were purchased with dollars you provided.

Adding to the pressure to find a replacement for oil is the drumbeat of alarm over greenhouse-gas emissions, especially as China and India continue their economic development, adding millions of gasoline-powered vehicles to the world’s roadways.

Unfortunately, an economically feasible replacement for oil is hard to find, because oil is a marvelous, energy-dense fuel, inexpensive compared with alternatives. Ethanol from corn, a favored contender as an alternative to gasoline, has lost its luster as it shows itself to be both economically and environmentally disastrous. (The government continues to subsidize it, of course.) Converting coal to liquid fuel is a proven technology, but it too fails tests both economic and environmental.

But a new contender has entered the ring. That contender is (drum roll)–pond scum. More precisely, algae, which can be turned into a renewable, environmentally friendly replacement for gasoline, diesel, aviation gas, and more. Algae fuels hold so much promise, in fact, that venture capital is pouring into their development even in the face of a massive recession–suggesting that, unlike other “green” fuels, it won’t need government subsidies to thrive. More than 150 companies around the world are putting money into algae-fuel research. And you know things are serious when Big Oil buys in: Shell, Chevron, Conoco-Phillips, and ExxonMobil have jumped into the pond with big money, hoping to find another source of liquid fuel to complement oil in meeting expected world demand. ExxonMobil is in the game to the tune of $600 million, serious money even for them.

Here’s how it works. Algae use sunlight to convert carbon dioxide (the dominant man-made greenhouse gas) into sugar molecules, which they then convert into the myriad chemicals they need to live. They have high population-growth rates, and, most important, they’re oily: About half their mass is fat, which can be chemically converted into diesel fuel, gasoline, aviation fuel, etc.


Several things make algae especially interesting from a fuel perspective.


The National Renewable Energy Laboratory estimates that algae can produce 10,000 times more oil per acre than other biofuel crops, such as soybeans.


Algae don’t compete with food crops for land. Algae don’t need arable land, just flat land, where they’re grown in long, oval, racetrack-like ponds. Algae can also be grown in enclosed growth systems, which can be just about anywhere there is a combination of warmth, sunlight, and surplus carbon dioxide.


Unlike ethanol, algae don’t need to consume fresh water. They can grow on salty water, or even waste water, which they clean up as they grow. By contrast, according to some estimates it takes 140 gallons of fresh water to produce a gallon of corn ethanol.


The stuff left over after you squeeze all the oil out of algae is a mixture of protein and sugars that can be used in many different products, including animal feed, bio-plastics, and pharmaceuticals, or you can just chuck it into a furnace and generate electricity from steam. We already use algae for all kinds of things, such as food, coloring agents, pharmaceutical production, and treating sewage.


Yhere’s the greenhouse-gas connection. Algae fed on the carbon dioxide in regular air are carbon-neutral. They pull carbon dioxide out of the air when they grow, and it’s released back into the air when they’re used as fuel.

Of course, there are plenty of challenges to be overcome. The best strains for given growing conditions have to be identified and optimized. Algae grown in open ponds are susceptible to weather, predation, and disease. If fresh water is used, evaporation becomes a significant problem, increasing water use.

Will algae fuels let us have our Hummers and drive them too? Nobody knows yet, but with the private money pouring in from around the world, there’s certainly nourishment for the scum to grow on.

Green, Kenneth

==> See more about algae: Since the algae, efforts to save water run deep – Rural Finance – Business Surveys Series

The Great Lake Killer


The great lake killer: algae swells are gross, deadly, and fixable. So why aren’t we doing anything?

YOU KNOW CYANOBACTERIA as blue-green algae and see it in turgid, soupy bloom across Canada. Every summer, excess nitrogen and phosphorus in freshwater bodies suck oxygen from the water, causing roiling dead zones–areas where aquatic plants and animals can’t survive. Simultaneously, this nasty bacteria produces toxins that harms the livers, kidneys, nervous systems and flesh of humans, pets, livestock, wildlife, and fish. It’s now a dominant food source for zooplankton, in turn eaten by many native fish, but as food the bacteria is nutritionally empty–a natural equivalent to junk food. The cascading negative effects run throughout the food web.

North Americans have studied this destructive phenomenon extensively since the 1950s. We know humans have done most of the damage, via runoff from agriculture, septic tanks, wastewater, and commercial fertilizers. And, we know the number of Canadian water bodies contaminated with blooms is rising. Algae swell are a ubiquitous problem in Lake Erie, the shallowest, warmest and most biologically productive of the Great Lakes. Research from Ohio State University in 2013 showed the volume of cyanobacteria per square metre between 2008-2013 was double the volume of the previous six years.


It wasn’t always this way. Blooms decreased significantly in the late 1970s after Canada and the U.S. signed the Great Lakes Water Quality Agreement in 1972. By the early ’90s, algae blooms were rare. Yet cyanobacteria came storming back in the mid-’90s. It’s unclear why, but one theory holds that by consuming cyanobacteria’s competition, invasive zebra mussels allowed their population to explode. True or not, Lake Erie drinking water now often fails to meet World Health Organization standards for safety because of cyanobacteria contamination, leading municipalities to spend an additional $1.2 million annually on water filtration.

This troubling situation isn’t unique to Lake Erie. Lake Winnipeg’s drainage basin (home to three times as much livestock as people) has seen a fivefold increase in blue-green algae between 1969-2003. Lakes experiencing blooms in Quebec rose from 21 in 2004 to 150 in 2009. Seventy-five percent of Alberta’s lakes experience a large-scale algae bloom at least once a year.

This increase in cyanobacteria is mind-boggling. As the climate warms, so much about the future of the Great Lakes–everything from water levels to invasive species spread to the health of aquatic plants and animals–remains uncertain. But cyanobacteria represents an ecological challenge on which we have reams of scientific data, widespread public awareness, and a profound understanding of the issues, and how to curtail them. It’s an embarrassment of riches, but the broader embarrassment is that despite this wealth of knowledge we’ve failed to make cyanobacteria blooms a things of the past.

Frustratingly, a simple solution exists–even if few are using it. In northeast Indiana, a local farmer named Mike Long teamed up with the Nature Conservancy and biologists from nearby Notre Dame University. Their partnership is studying what effect a two-stage ditch has on reducing nutrient-heavy agricultural runoff to local streams–runoff that can, in turn, lead to cyanobacteria blooms. While conventional agricultural ditches drop steeply from either side in a “V” shape, two-stage ditches offer a gradual slope shaped like a stretched “W,” creating a “bench” halfway down the ditch that’s thick with plant life. Compared with a six-foot wide standard ditch, two-stagers hold substantially more water during floods, preventing nitrogen and phosphorous from accumulating in fulsome blooms downstream.

With a foot of snow on the ground, I visited an experimental two-stage ditch in early March. There, I learned that following two years of research on the half-mile trial gully, agricultural nitrates heading to a nearby river were down more than 30 percent; phosphorus levels plummeted 50 percent. Two-stage ditches do this by retaining sediment and fertilizers on the farm, where they’re needed, rather than allowing them to enter local waterways. This can have all sorts of positive long-term effects: What begins life as agricultural fertilizer in Indiana ends up as deadly algae in the Gulf of Mexico a thousand miles away, underscoring that what we do here affects life there. The ecological cliche that everything’s connected is no less important for being true.


While results are promising, two-stage uptake is slow across the Midwest and much of Canada. One estimate suggests just 50 miles of two-stage ditches have been constructed in North America and Europe combined. With the economics ironed out, scaling up two-stage ditches across North America could have huge impacts, as one tool among many, on limiting toxic algae blooms.

Cyanobacteria outbreaks remain a serious environmental challenge we deal with largely when blooms keep us from lounging beachside or when they sicken pets or livestock. We get distressing news coverage in summer months when blooms proliferate before media moves on awaiting what’s now inevitable–subsequent blooms the following year. Yet solutions to these toxic bacterial stews require year-round commitments from individuals, governments, and private interests to implement tested reduction methods while also trying new ideas. Nature employs this design in river valleys to control sediment flow and mitigate flood damage; it’s time we followed suit.

ANDREW REEVES is an award-winning environmental writer, columnist with This Magazine and contributing editor at Alternatives Journal.

Reeves, Andrew

Page 1 of 21 2